Changes

Jump to: navigation, search

Active carbon

159 bytes removed, 00:01, 3 October 2013
no edit summary
[[Image:active carbon icon.png|right|80px]][[Image:activated_carbon_bags.jpg|thumb|right|300px200px|Activated carbon bags for sale and use in water treatment systems. Photo: [http://www.alibaba.com/product-gs/246397546/activated_carbon_for_water_treatment.html Alibaba.com.]]]__NOTOC__<small-title />
Activated carbon is produced by the controlled heating of carbonaceous material, normally wood, coal, coconut shells or peat. This activation produces a porous material with a large surface area (500–1500 m2/g) and a high affinity for organic compounds. It is normally used in either powdered (PAC) or granular (GAC) ([[Granular filtration]]) form. When the adsorption capacity of the carbon is exhausted, it can be reactivated by burning off the organics in a controlled manner. However, PAC (and some GAC) is normally used only once before disposal.
Different types of activated carbon have different affinities for types of contaminants. The choice between PAC and GAC will depend upon the relative cost-effectiveness, frequency and dose required. PAC would generally be preferred in the case of seasonal or intermittent contamination or where low dosage rates are required. PAC is dosed as a slurry into the water and removed by subsequent treatment processes, together with the waterworks sludge. Its use is therefore restricted to surface water treatment works with existing filters. GAC in fixed-bed adsorbers is used much more efficiently than PAC dosed into the water, and the effective carbon use per water volume treated would be much lower than the dose of PAC required to achieve the same removal.
===Suitable conditions===
GAC is used for taste and odour control. It is normally used in fixed beds, either in purpose-built adsorbers for chemicals or in existing filter shells by replacement of sand with GAC of a similar particle size. Although at most treatment works it would be cheaper to convert existing filters rather than build separate adsorbers, use of existing filters usually allows only short contact times, and they are not capable of facile reactivation.
|-
! width="50%" style="background:#efefef;" | Advantages
! style="background:#ffdeadf0f8ff;" | Disadvantages
|-
| valign="top" | - The activated carbon filter makes water taste good and eliminates chlorine and various organic compounds. <br>
===Construction, operations and maintenance===
It is common practice to install additional GAC adsorbers (in some cases preceded by ozonation) between the rapid gravity filters and final disinfection. Most groundwater sources do not have existing filters, and separate adsorbers would need to be installed.
As a general rule, chemicals with low solubilities and high log octanol–water partition coefficients are well adsorbed.
===Acknowledgements===* [http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CGcQFjAB&url=http%3A%2F%2Fwhqlibdocwhqlibdoc.who.int%2Fpublications%2F2011%2F9789241548151_eng/publications/2011/9789241548151_eng.pdf&ei=0Za6T7rBFMKZiQLZhOH1Bg&usg=AFQjCNGx2Q3Rc5yFmbygAIgmJOjg5CSp7g&sig2=8YRhyKpjfeGy8xqp9j8X4Q Guidelines for Drinking-water Quality.] Fourth edition. WHO, 2011.
* McAllister, Skye. [http://www.pottersforpeace.com/ Analysis and Comparison of Sustainable Water Filters.] May, 2005.
Akvopedia-spade, akvouser, bureaucrat, emailconfirmed, staff, susana-working-group-1, susana-working-group-10, susana-working-group-11, susana-working-group-12, susana-working-group-2, susana-working-group-3, susana-working-group-4, susana-working-group-5, susana-working-group-6, susana-working-group-7, susana-working-group-8, susana-working-group-9, susana-working-group-susana-member, administrator, widget editor
30,949
edits

Navigation menu