Soak Pit

From Akvopedia
Revision as of 00:39, 1 November 2014 by Winona (talk | contribs)

Jump to: navigation, search
Applicable in systems:
1, 2 , 3 , 4 , 5
Level of Application
Household XX
Neighbourhood X
City

 

Inputs
Effluent, Greywater, Urine, Anal Cleansing Water, Stored Urine


Level of management
Household XX
Shared XX
Public

 

Outputs
Stored Urine, Anal Cleansing Water
Soak-pit.png




Icon soak pit.png

A soak pit, also known as a soakaway or leach pit, is a covered, porous-walled chamber that allows water to slowly soak into the ground. Pre-settled effluent from a Collection and Storage/Treatment or (Semi-) Centralized Treatment technology is discharged to the underground chamber from which it infiltrates into the surrounding soil.


As wastewater (greywater or blackwater after primary treatment) percolates through the soil from the soak pit, small particles are filtered out by the soil matrix and organics are digested by microorganisms. Thus, soak pits are best suited for soil with good absorptive properties; clay, hard packed or rocky soil is not appropriate.

Design Considerations

The soak pit should be between 1.5 and 4 m deep, but as a rule of thumb, never less than 2 m above the groundwater table. It should be located at a safe distance from a drinking water source (ideally more than 30 m). The soak pit should be kept away from high-traffic areas so that the soil above and around it is not compacted. It can be left empty and lined with a porous material to provide support and prevent collapse, or left unlined and filled with coarse rocks and gravel. The rocks and gravel will prevent the walls from collapsing, but will still provide adequate space for the wastewater. In both cases, a layer of sand and fine gravel should be spread across the bottom to help disperse the flow. To allow for future access, a removable (preferably concrete) lid should be used to seal the pit until it needs to be maintained.


Advantages Disadvantages/limitations
- Can be built and repaired with locally available materials

- Technique simple to apply for all users
- Small land area required
- Low capital and operating costs

- Primary treatment is required to prevent clogging

- May negatively affect soil and groundwater properties



Appropriateness

A soak pit does not provide adequate treatment for raw wastewater and the pit will quickly clog. It should be used for discharging pre-settled blackwater or greywater. Soak pits are appropriate for rural and peri-urban settlements. They depend on soil with a sufficient absorptive capacity. They are not appropriate for areas prone to flooding or that have high groundwater tables.

Health Aspects/Acceptance

As long as the soak pit is not used for raw sewage, and as long as the previous Collection and Storage/Treatment technology is functioning well, health concerns are minimal. The technology is located underground and, thus, humans and animals should have no contact with the effluent.Since the soak pit is odourless and not visible, it should be accepted by even the most sensitive communities.

Operation & Maintenance

A well-sized soak pit should last between 3 and 5 years without maintenance. To extend the life of a soak pit, care should be taken to ensure that the effluent has been clarified and/ or filtered to prevent the excessive build-up of solids. Particles and biomass will eventually clog the pit and it will need to be cleaned or moved. When the performance of the soak pit deteriorates, the material inside the soak pit can be excavated and refilled.

Field experiences

The following project(s) utilize soak pits.

Akvorsr logo lite.png
RSR Project 644
Rwenzori Integrated School WASH Project


References

  • Ahrens, B. (2005). A Comparison of Wash Area and Soak Pit Construction: The Changing Nature of Urban, Rural, and Peri-Urban Linkages in Sikasso, Mali. Peace Corps, US. (Detailed construction instructions)
Available at: mtu.edu/peacecorps/programs/civil/theses
  • Mara, D. D. (1996). Low-Cost Urban Sanitation. Wiley, Chichester, UK. pp. 63-65.

(Dimensioning calculations)

  • Oxfam (2008). Septic Tank Guidelines. Technical Brief. Oxfam GB, Oxford, UK. p. 4.
Available at: policy-practice.oxfam.org.uk
  • Polprasert, C. and Rajput, V. S. (1982). Environmental Sanitation Reviews. Septic Tank and Septic Systems. Environmental

Sanitation Information Center, AIT, Bangkok, TH. pp. 31-58.

Acknowledgements

Eawag compendium cover.png

The material on this page was adapted from:

Elizabeth Tilley, Lukas Ulrich, Christoph Lüthi, Philippe Reymond and Christian Zurbrügg (2014). Compendium of Sanitation Systems and Technologies, published by Sandec, the Department of Water and Sanitation in Developing Countries of Eawag, the Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.

The 2nd edition publication is available in English. French and Spanish are yet to come.