Arsenic
Arsenic is a chemical element with the symbol As, atomic number 33 and relative atomic mass 74.92. Arsenic occurs in many minerals, usually in conjunction with sulfur and metals, and also as a pure elemental crystal. It was first documented by Albertus Magnus in 1250. Arsenic is a metalloid. It can exist in various allotropes, although only the grey form has important use in industry.
The main use of metallic arsenic is for strengthening alloys of copper and especially lead (for example, in car batteries). Arsenic is a common n-type dopant in semiconductor electronic devices, and the optoelectronic compound gallium arsenide is the most common semiconductor in use after doped silicon. Arsenic and its compounds, especially the trioxide, are used in the production of pesticides (treated wood products), herbicides, and insecticides. These applications are declining, however.
Arsenic is notoriously poisonous to multicellular life, although a few species of bacteria are able to use arsenic compounds as respiratory metabolites. Arsenic contamination of groundwater is a problem that affects millions of people across the world.
Contents
Characteristics
Physical Characteristics
The three most common allotropes are metallic grey, yellow and black arsenic, with grey being the most common. Grey arsenic (α-As, space group R3m No. 166) adopts a double-layered structure consisting of many interlocked ruffled six-membered rings. Because of weak bonding between the layers, grey arsenic is brittle and has a relatively low Mohs hardness of 3.5. Nearest and next-nearest neighbors form a distorted octahedral complex, with the three atoms in the same double-layer being slightly closer than the three atoms in the next. This relatively close packing leads to a high density of 5.73 g/cm3. Grey arsenic is a semimetal, but becomes a semiconductor with a bandgap of 1.2–1.4 eV if amorphized. Yellow arsenic is soft and waxy, and somewhat similar to tetraphosphorus (P4). Both have four atoms arranged in a tetrahedral structure in which each atom is bound to each of the other three atoms by a single bond. This unstable allotrope, being molecular, is the most volatile, least dense and most toxic. Solid yellow arsenic is produced by rapid cooling of arsenic vapour, As4. It is rapidly transformed into the grey arsenic by light. The yellow form has a density of 1.97 g/cm3. Black arsenic is similar in structure to red phosphorus.
Isotopes
Naturally occurring arsenic is composed of one stable isotope, 75As. As of 2003, at least 33 radioisotopes have also been synthesized, ranging in atomic mass from 60 to 92. The most stable of these is 73As with a half-life of 80.3 days. Isotopes that are lighter than the stable 75As tend to decay by β+ decay, and those that are heavier tend to decay by β- decay, with some exceptions. At least 10 nuclear isomers have been described, ranging in atomic mass from 66 to 84. The most stable of arsenic's isomers is 68mAs with a half-life of 111 seconds.
Chemistry
When heated in air, arsenic oxidizes to arsenic trioxide; the fumes from this reaction have an odour resembling garlic. This odour can be detected on striking arsenide minerals such as arsenopyrite with a hammer. Arsenic (and some arsenic compounds) sublimes upon heating at atmospheric pressure, converting directly to a gaseous form without an intervening liquid state at 887 K (614 °C). The triple point is 3.63 MPa and 1,090 K (820 °C). Arsenic makes arsenic acid with concentrated nitric acid, arsenious acid with dilute nitric acid, and arsenic trioxide with concentrated sulfuric acid.
Compounds
Arsenic compounds resemble in some respects those of phosphorus, which occupies the same group (column) of the periodic table. Arsenic is less commonly observed in the pentavalent state, however. The most common oxidation states for arsenic are: −3 in the arsenides, such as alloy-like intermetallic compounds; and +3 in the arsenites, arsenates(III), and most organoarsenic compounds. Arsenic also bonds readily to itself as seen in the square As3− 4 ions in the mineral skutterudite. In the +3 oxidation state, arsenic is typically pyramidal, owing to the influence of the lone pair of electrons.
Inorganic
Arsenic forms colorless, odorless, crystalline oxides As2O3 ("white arsenic") and As2O5, which are hygroscopic and readily soluble in water to form acidic solutions. Arsenic(V) acid is a weak acid. Its salts are called arsenates, which is the basis of arsenic contamination of groundwater, a problem that affects many people. Man-made arsenates include Paris Green (copper(II) acetoarsenite), calcium arsenate, and lead hydrogen arsenate. The latter three have been used as agricultural insecticides and poisons. The protonation steps between the arsenate and arsenic acid are similar to those between phosphate and phosphoric acid. Unlike phosphorus acid, arsenous acid is genuinely tribasic, with the formula As(OH)3. A broad variety of sulfur compounds of arsenic are known. Orpiment (As2S3) and realgar (As4S4) are somewhat abundant and were formerly used as painting pigments. In As4S10, arsenic has a formal oxidation state of +2 in As4S4, which features As-As bonds so that the total covalency of As is still in fact three. The trifluoride, trichloride, tribromide, and triiodide of arsenic(III) are well known, whereas only Arsenic pentafluoride (AsF5) is the only important pentahalide. Again reflecting the lower stability of the 5+ oxidation state, the pentachloride is stable only below −50 °C.
Organoarsenic compounds
A large variety of organoarsenic compounds are known. Several were developed as chemical warfare agents during World War I, including vesicants such as lewisite and vomiting agents such as adamsite. Cacodylic acid, which is of historic and practical interest, arises from the methylation of arsenic trioxide, a reaction that has no analogy in phosphorus chemistry.
Alloys
Arsenic is used as the group 5 element in the III-V semiconductors gallium arsenide, indium arsenide, and aluminium arsenide. The valence electron count of GaAs is the same as a pair of Si atoms, but the band structure is completely different, which results distinct bulk properties. Other arsenic alloys include the II-IV semiconductor cadmium arsenide.
Occurrence and production
Minerals with the formula MAsS and MAs2 (M = Fe, Ni, Co) are the dominant commercial sources of arsenic, together with realgar (an arsenic sulfide mineral) and native arsenic. An illustrative mineral is arsenopyrite (FeAsS), which is structurally related to iron pyrite. Many minor As-containing minerals are known. Arsenic also occurs in various organic forms in the environment. Inorganic arsenic and its compounds, upon entering the food chain, are progressively metabolized to a less toxic form of arsenic through a process of methylation.[18] Other naturally occurring pathways of exposure include volcanic ash, weathering of arsenic-containing minerals and ores, and dissolved in groundwater. It is also found in food, water, soil, and air.[19] The most common pathway of exposure for humans is ingestion, and the predominant source of arsenic in our diet is through seafood. An additional route of exposure is through inhalation.
Arsenic output in 2006[21] In 2005, China was the top producer of white arsenic with almost 50% world share, followed by Chile, Peru, and Morocco, according to the British Geological Survey and the United States Geological Survey.[21] Most operations in the US and Europe have closed for environmental reasons. The arsenic is recovered mainly as a side product from the purification of copper. Arsenic is part of the smelter dust from copper, gold, and lead smelters.[22] On roasting in air of arsenopyrite, arsenic sublimes as arsenic(III) oxide leaving iron oxides,[17] while roasting without air results in the production of metallic arsenic. Further purification from sulfur and other chalcogens is achieved by sublimation in vacuum or in a hydrogen atmosphere or by distillation from molten lead-arsenic mixture.[23]