Difference between revisions of "Dehydration Vaults"

From Akvopedia
Jump to: navigation, search
(References)
 
(14 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- table at top of page with logo, picture, Application level, Management level, and input-output tables -->
+
{|style="float: left;"
{{santable|
+
|{{Language-box|english_link=Dehydration_Vaults|french_link=Chambre_de_déshydratation|spanish_link=Camaras_de_Deshidratacion|hindi_link=coming soon|malayalam_link=coming soon|tamil_link=coming soon | korean_link=coming soon | chinese_link=Coming soon | indonesian_link=Coming soon | japanese_link=Coming soon}}
 +
|}
 +
{|width="100%"
 +
|style="width:50%;"|{{santable_new|
 
sys1=[[Waterless System with Urine Diversion|4]]|
 
sys1=[[Waterless System with Urine Diversion|4]]|
 
sys2=|
 
sys2=|
Line 9: Line 12:
 
sys7=|
 
sys7=|
 
sys8=|
 
sys8=|
 +
sys9=|
 
pic=Dehydration_vaults.png|
 
pic=Dehydration_vaults.png|
 
ApplHousehold=XX|
 
ApplHousehold=XX|
Line 16: Line 20:
 
ManShared=XX|
 
ManShared=XX|
 
ManPublic=X|
 
ManPublic=X|
Input1=Faeces |Input2=| Organics |Input3=|Input4=|Input5=|
+
Input1=Faeces |Input2=Dry Cleansing Materials| Organics |Input3=|Input4=|Input5=|
 
Output1=Dried Faeces |Output2= | Output3= | Output4= | Output5=
 
Output1=Dried Faeces |Output2= | Output3= | Output4= | Output5=
|english_link=Dehydration_Vaults
 
|french_link=Chambre_de_déshydratation
 
|spanish_link=Camaras de Deshidratacion
 
 
}}
 
}}
 +
|[[Image:Dehydration_vaults.png |right|500px]]
 +
|}
 +
<br>
 +
----
 +
<br>
  
[[Image:Icon_dehydration_vault.png |right|95px]]
+
[[Image:Icon_dehydration_vault.png |right|80px]]
'''Dehydration vaults are used to collect, store and dry (dehydrate) faeces. Faeces will only dehydrate when the vaults are watertight to prevent external moisture from entering and when urine and anal cleansing water are diverted away from the vaults.'''
 
  
[[Image:Vaults_and_chambers.PNG|thumb|right|150px|[[Vaults and chambers |Dy]], in South Africa(for credits, click the picture)]]
+
'''Dehydration vaults are used to collect, store and dry (dehydrate) faeces. Faeces will only dehydrate when the vaults are well ventilated, watertight to prevent external moisture from entering, and when urine and anal cleansing water are diverted away from the vaults.'''
  
[[Image:Dehydration.PNG‎|thumb|right|150px|[[Dehydration |Dehydration]], in Ecuador (for credits, click the picture)]]
+
<br>
 +
[[Image:Vaults_and_chambers.PNG|thumb|right|200px|[[Vaults and chambers |Dy]], in South Africa(for credits, click the picture)]]
  
When urine is separated from faeces, the faeces dry quickly. In the absence of moisture, organisms cannot grow and as such, smells are minimized and pathogens are destroyed. Vaults used for drying faeces in the absence of urine have various local names. One of the most common names for this technology is the Vietnamese Double Vaults.
+
When faeces are not mixed with urine and other liquids, they dry quickly. In the absence of moisture, organisms cannot grow, pathogens are destroyed and smells minimized. The use of two alternating vaults allows the faeces to dehydrate in one vault while the other vault fills. When one vault is full, the [[Urine Diverting Dry Toilet | Urine-Diverting Dry Toilet]] (UDDT, U.2) is moved to the second vault. While the second vault fills up, the faeces in the first vault dry and decrease in volume. When the second vault is full, the first one is emptied and put back into service. To prevent flies, minimize odours and encourage drying, a small amount of ash, lime, dry soil or sawdust should be used to cover faeces after each use.
  
Excreta may dry inside the vault as a result of sun radiation, natural evaporation and ventilation. Absorbents such as lime, ash or dry soil should be added to the chamber after each defecation in order to absorb moisture, making the pile less compact. The product from a dehydration process is a kind of mulch, rich in humus, carbon, fibrous material, phosphorous and potassium. It should be stored, sun-dried or composted in order to kill off all pathogens.
+
===Design Considerations===
 +
Dehydration vaults can be constructed indoors or with a separate superstructure. A vent pipe is required to remove humidity from the vaults and control flies and odours. The chambers should be airtight for proper functioning of the ventilation. They should be made of sealed brickwork or concrete to ensure that surface runoff cannot enter. The WHO recommends a minimum storage time of 6 months if ash or lime are used as cover material (alkaline treatment), otherwise the storage should be for at least 1 year for warm climates (>20 °C average) and for 1.5 to 2 years for colder climates.
  
A family of 6 will produce 500L of faeces in approximately six months. For design purposes it is recommended to assume that one person will require almost 100L of faeces storage space every six months. The vaults should be slightly oversized to account for airflow, visitors and the non-even distribution of faeces in the chamber. Each vault is sized to accommodate sixmonths of faeces accumulation which in turn, results in a six month drying time in the out-of-service vault.
+
In case of alkaline treatment, each vault is sized to accommodate at least 6 months of faeces accumulation. This results in a 6 month storage and dehydration time in the out-of-service vault. The vault dimensions should account for cover material, airflow, the uneven distribution of faeces, and possibly visitors and dry cleansing materials. It can be assumed that one person will require around 50 L of storage volume every 6 months. A minimum chamber height of 60 to 80 cm is recommended for easy emptying and access to the urine pipes.
 
 
Two alternating vaults allow the faeces to dehydrate in one vault while the other vault fills. When one vault is full it is sealed with a lid and the UDDT (U2) is moved to the second vault. While the second vault fills up, the faeces in the first vault slowly dry and decrease in volume. When the second vault is full, it is sealed, the dry material from the first vault is removed and the first vault is then put back into service.
 
 
 
The vaults must be watertight to keep the faeces as dry as possible. Chambers should be constructed of sealed block or formed concrete to ensure that rainwater, surface run-off, greywater and urine are prevented from entering the vaults. Urine can be collected in a bucket and discharge to the ground (garden) or stored in a tank for future transport and use.
 
 
 
A vent is required to help keep the vaults dry and control flies and odours.
 
  
 +
<br>
 
{{procontable | pro=
 
{{procontable | pro=
- Can be built and repaired with locally available materials. <br> - Because double pits are used alternately, their life is virtually unlimited. <br> - Good in rocky and/or flooded areas. <br> - Excavation of dried faeces is easier than faecal sludge. <br> - No real problems with flies or odours if used correctly. <br> - Does not require a constant source of water. <br> - Suitable for all types of user (sitters, squatters, washers and wipers). <br> - Low (but variable) capital costs depending on materials; no or low operating costs. <br> - Small land area required. | con=
+
- Significant reduction in pathogens<br>
- Requires education and acceptance to be used correctly. <br> - Requires constant source of ash, sand or lime. <br> - Requires a place where urine and treated faeces can be used or discharged. <br> - Urine and faeces require manual removal.
+
- Can be built and repaired with locally available materials. <br>  
 +
- Because double pits are used alternately, their life is virtually unlimited. <br>  
 +
- Potential for use of dried faeces as soil conditioner<br>
 +
- Good in rocky and/or flooded areas. <br>  
 +
- Excavation of dried faeces is easier than faecal sludge. <br>  
 +
- No real problems with flies or odours if used correctly (i.e., kept dry). <br>  
 +
- Suitable for all types of user (sitters, squatters, washers and wipers). <br>  
 +
- Low (but variable) capital costs depending on materials; no or low operating costs. <br>  
 +
| con=
 +
- Requires training and acceptance to be used correctly <br>  
 +
- Requires constant source of cover material, e.g. ash, sand or lime. <br>  
 +
- Manual removal of dried faeces is required
 
}}
 
}}
  
==Adequacy==
+
===Appropriateness===  
Dehydration Vaults can be installed in almost every setting from rural to dense urban because of the small land area required, the minimal odours and the ease of use. They are especially appropriate for water scarce and rocky areas. In areas that are frequently flooded, Dehydration Vaults are appropriate because they are constructed to be watertight. Furthermore, where there is no plot of land available, the vaults can be installed indoors, which also makes this technology applicable for colder climates (where leaving the house is less desirable).
+
Dehydration vaults can be installed in almost every setting, from rural to dense urban areas, because of the small land area required, minimal odours and ease of use. If used in an urban context, this technology relies on a transport service for the dried faeces (and urine) since urban users normally do not have an interest and/or opportunity to use it locally. Dehydration vaults are especially appropriate for water-scarce and rocky areas or where the groundwater table is high. They are also suitable in areas that are frequently flooded because they are built to be watertight.
 
 
==Health Aspects/Acceptance ==
 
  
Dehydration Vaults can be a clean, comfortable, and easy-to-use technology. When users are well educated and understand how the technology works they may be more willing to accept it as a viable sanitation solution. When the vaults are kept dry, there should be no problems with flies or odours. Faeces from the double vaults should be very dry and relatively safe to handle provided they were continuously covered with material and not allowed to get wet.
+
===Health Aspects/Acceptance===
 +
Dehydration vaults can be a clean, comfortable, and easy-to-use technology. It is crucial, however, that the users are well trained to understand how the technology works and appreciate its benefits. When the vaults are kept dry, there should not be any problems with flies or odours. After the recommended storage time, the faeces should be very dry and relatively safe to handle, provided that they did not get wet. However, a low health risk remains. Single dehydration vaults or bins do not allow faeces to sufficiently dehydrate.
  
There is a low health risk for those whom have to empty or change the urine container. Faeces that have been dried for over one year also pose a low health risk.
+
When the full container needs emptying, the faeces on top are still fresh. Hence, the risk associated with the handling of faecal matter is inherently higher in single vaults compared to double vault designs. The use of alternating chambers is, therefore, recommended. However, research and field tests of sealed faeces containers (or cartridges) for safe transportation and easy cleaning, along with the corresponding logistics, are on-going.
  
==Upgrading==  
+
===Operation & Maintenance===
 +
Just like the faeces which are dried, but not degraded in the vaults, dry cleansing materials will not decompose in the chambers. Whenever the material is intended to be applied onto fields without further treatment, it is recommended to separately collect and dispose of the dry cleansing materials. Occasionally, the faeces that have accumulated beneath the toilet should be pushed to the sides of the chamber.
  
There is a risk however when using single vaults, that the top portion of the faeces will not be fully dried and/or hygienized. Single vaults are not recommended (because of the need to handle fresh faeces) and should, whenever possible be upgraded to a double vault.
+
Care should be taken to ensure that no water or urine gets into the dehydration vault. If this happens, extra ash, lime, soil or sawdust can be added to help absorb the liquid. To empty the vaults, a shovel, gloves and possibly a facemask (cloth) should be used to avoid contact with the dried faeces.
  
==Maintenance==  
+
===References===
  
To prevent flies, minimize odours and encourage drying, a small amount of ash, soil, or lime should be used to cover faeces after each use. Care should be taken to ensure that no water or urine gets into the Dehydration Vault. If this happens, extra soil, ash, lime, or sawdust can be added to help absorb the liquid. Because the faeces are not actually degraded (just dried), dry cleansing materials must not be added to the Dehydration Vaults as they will not decompose. Occasionally, the mounded faeces beneath the toilet hole should be pushed to the sides of the pit for an even drying. Where water is used for cleansing, an appropriate User Interface should be installed to divert and collect it separately. To empty the vaults, a shovel, gloves and possibly a face mask (cloth) should be used to limit contact with the dried faeces.
+
* Deegener, S., Samwel, M. and Gabizon, S. (2006). [https://www.susana.org/en/knowledge-hub/resources-and-publications/library/details/430 Urine Diverting Toilets. Principles, Operation and Construction]. Women in Europe for a Common Future, Utrecht, NL and Munich, DE.
  
 +
* Rieck, C., von Münch, E. and Hoffmann, H. (2012). [https://www.susana.org/en/knowledge-hub/resources-and-publications/library/details/874 Technology Review of Urine-Diverting Dry Toilets (UDDTs)]. Overview of Design, Operation, Management and Costs. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Eschborn, DE.
  
==Acknowledgements==
+
* Winblad, U. and Simpson-Hébert, M. (Eds.) (2004). [http://www.ecosanres.org/pdf_files/Ecological_Sanitation_2004.pdf Ecological Sanitation. Revised and Enlarged Edition]. Stockholm Environment Institute, Stockholm, SE. (A general description of various designs and adaptations, especially Chapter 3)
{{:Acknowledgements Sanitation}}
 
  
==References and external links==
+
* WHO (2006). [https://www.who.int/water_sanitation_health/publications/gsuweg4/en/ Guidelines for the Safe Use of Wastewater, Excreta and Greywater. Volume 4: Excreta and Greywater Use in Agriculture]. World Health Organization, Geneva, CH.
  
* (-) Manual del Sanitario Ecologico Seco. Available: http://www.zoomzap.com (A very comprehensive manual on dry chamber construction including detailed instruction and material lists. In Spanish.)
+
* [http://www.who.int/water_sanitation_health/publications/guidelines-on-sanitation-and-health/en/ WHO: Guidelines on sanitation and health - 2018]
  
* GTZ (2005). Urine diverting dry toilets programme dissemination (data sheet). GTZ, Germany. Available: www.gtz.de (General overview of Dehydration Chambers with some dimensioning and materials lists.)
+
===Acknowledgements===
 
+
{{:Acknowledgements Sanitation}}
* Winblad, U., and Simpson-Herbert, M. (eds.) (2004). Ecological Sanitation - revised and enlarged edition. SEI, Stockholm, Sweden. (A general description of various designs and adaptations, especially Chapter 3.)
 
 
 
* Women in Europe for a Common Future (2006). Urine diverting Toilets: Principles, Operation and Construction. Available: http://www.wecf.de (Photos and explanation of how to build a double vault and superstructure.)
 

Latest revision as of 01:11, 9 September 2020

English Français Español भारत മലയാളം தமிழ் 한국어 中國 Indonesia Japanese
Applicable in systems:
4
Level of Application
Household XX
Neighbourhood X
City

 

Inputs
Faeces, Dry Cleansing Materials


Level of management
Household XX
Shared XX
Public X

 

Outputs
Dried Faeces
Dehydration vaults.png




Icon dehydration vault.png

Dehydration vaults are used to collect, store and dry (dehydrate) faeces. Faeces will only dehydrate when the vaults are well ventilated, watertight to prevent external moisture from entering, and when urine and anal cleansing water are diverted away from the vaults.


Dy, in South Africa(for credits, click the picture)

When faeces are not mixed with urine and other liquids, they dry quickly. In the absence of moisture, organisms cannot grow, pathogens are destroyed and smells minimized. The use of two alternating vaults allows the faeces to dehydrate in one vault while the other vault fills. When one vault is full, the Urine-Diverting Dry Toilet (UDDT, U.2) is moved to the second vault. While the second vault fills up, the faeces in the first vault dry and decrease in volume. When the second vault is full, the first one is emptied and put back into service. To prevent flies, minimize odours and encourage drying, a small amount of ash, lime, dry soil or sawdust should be used to cover faeces after each use.

Design Considerations

Dehydration vaults can be constructed indoors or with a separate superstructure. A vent pipe is required to remove humidity from the vaults and control flies and odours. The chambers should be airtight for proper functioning of the ventilation. They should be made of sealed brickwork or concrete to ensure that surface runoff cannot enter. The WHO recommends a minimum storage time of 6 months if ash or lime are used as cover material (alkaline treatment), otherwise the storage should be for at least 1 year for warm climates (>20 °C average) and for 1.5 to 2 years for colder climates.

In case of alkaline treatment, each vault is sized to accommodate at least 6 months of faeces accumulation. This results in a 6 month storage and dehydration time in the out-of-service vault. The vault dimensions should account for cover material, airflow, the uneven distribution of faeces, and possibly visitors and dry cleansing materials. It can be assumed that one person will require around 50 L of storage volume every 6 months. A minimum chamber height of 60 to 80 cm is recommended for easy emptying and access to the urine pipes.


Advantages Disadvantages/limitations
- Significant reduction in pathogens

- Can be built and repaired with locally available materials.
- Because double pits are used alternately, their life is virtually unlimited.
- Potential for use of dried faeces as soil conditioner
- Good in rocky and/or flooded areas.
- Excavation of dried faeces is easier than faecal sludge.
- No real problems with flies or odours if used correctly (i.e., kept dry).
- Suitable for all types of user (sitters, squatters, washers and wipers).
- Low (but variable) capital costs depending on materials; no or low operating costs.

- Requires training and acceptance to be used correctly

- Requires constant source of cover material, e.g. ash, sand or lime.
- Manual removal of dried faeces is required


Appropriateness

Dehydration vaults can be installed in almost every setting, from rural to dense urban areas, because of the small land area required, minimal odours and ease of use. If used in an urban context, this technology relies on a transport service for the dried faeces (and urine) since urban users normally do not have an interest and/or opportunity to use it locally. Dehydration vaults are especially appropriate for water-scarce and rocky areas or where the groundwater table is high. They are also suitable in areas that are frequently flooded because they are built to be watertight.

Health Aspects/Acceptance

Dehydration vaults can be a clean, comfortable, and easy-to-use technology. It is crucial, however, that the users are well trained to understand how the technology works and appreciate its benefits. When the vaults are kept dry, there should not be any problems with flies or odours. After the recommended storage time, the faeces should be very dry and relatively safe to handle, provided that they did not get wet. However, a low health risk remains. Single dehydration vaults or bins do not allow faeces to sufficiently dehydrate.

When the full container needs emptying, the faeces on top are still fresh. Hence, the risk associated with the handling of faecal matter is inherently higher in single vaults compared to double vault designs. The use of alternating chambers is, therefore, recommended. However, research and field tests of sealed faeces containers (or cartridges) for safe transportation and easy cleaning, along with the corresponding logistics, are on-going.

Operation & Maintenance

Just like the faeces which are dried, but not degraded in the vaults, dry cleansing materials will not decompose in the chambers. Whenever the material is intended to be applied onto fields without further treatment, it is recommended to separately collect and dispose of the dry cleansing materials. Occasionally, the faeces that have accumulated beneath the toilet should be pushed to the sides of the chamber.

Care should be taken to ensure that no water or urine gets into the dehydration vault. If this happens, extra ash, lime, soil or sawdust can be added to help absorb the liquid. To empty the vaults, a shovel, gloves and possibly a facemask (cloth) should be used to avoid contact with the dried faeces.

References

Acknowledgements

Eawag compendium cover.png

The material on this page was adapted from:

Elizabeth Tilley, Lukas Ulrich, Christoph Lüthi, Philippe Reymond and Christian Zurbrügg (2014). Compendium of Sanitation Systems and Technologies, published by Sandec, the Department of Water and Sanitation in Developing Countries of Eawag, the Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.

The 2nd edition publication is available in English. French and Spanish are yet to come.