Difference between revisions of "Anaerobic Baffled Reactor (ABR) 1"

From Akvopedia
Jump to: navigation, search
(No difference)

Revision as of 22:40, 28 September 2016

English Français Español भारत മലയാളം தமிழ் 한국어 中國 Indonesia Japanese
Applicable in systems:
1, 6 , 7 , 8 , 9
Level of Application
Household X
Neighbourhood XX
City

 

Inputs
Blackwater, Greywater, Brownwater, Effluent


Level of management
Household X
Shared XX
Public XX

 

Outputs
Sludge, Effluent
Anaerobic baffled reactor.png




Icon waste stabilization ponds.png

An anaerobic baffled reactor (ABR) is an improved Septic Tank (S.9) with a series of baffles under which the wastewater is forced to flow. The increased contact time with the active biomass (sludge) results in improved treatment.

The upflow chambers provide enhanced removal and digestion of organic matter. BOD may be reduced by up to 90%, which is far superior to its removal in a conventional Septic Tank.

Design Considerations

The majority of settleable solids are removed in a sedimentation chamber in front of the actual ABR. Small-scale, stand-alone units typically have an integrated settling compartment (as shown in S.10), but primary sedimentation can also take place in a separate Settler (T.1) or another preceding technology (e.g., existing Septic Tanks). Designs without a settling compartment are of particular interest for (Semi-) Centralized Treatment plants that combine the ABR with another technology for primary settling, or where prefabricated, modular units are used. Typical inflows range from 2 to 200 m3 per day.

Critical design parameters include a hydraulic retention time (HRT) between 48 to 72 hours, upflow velocity of the wastewater below 0.6 m/h and the number of upflow chambers (3 to 6). The connection between the chambers can be designed either with vertical pipes or baffles. Accessibility to all chambers (through access ports) is necessary for maintenance. Usually, the biogas produced in an ABR through anaerobic digestion is not collected because of its insufficient amount. The tank should be vented to allow for controlled release of odorous and potentially harmful gases.


Advantages Disadvantages

- Resistant to organic and hydraulic shock loads
- No electrical energy is required
- Low operating costs
- Long service life
- High reduction of BOD
- Low sludge production; the sludge is stabilized
- Moderate area requirement (can be built underground)

- Requires expert design and construction
- Low reduction of pathogens and nutrients
- Effluent and sludge require further treatment and/or appropriate discharge


Appropriateness

This technology is easily adaptable and can be applied at the household level, in small neighbourhoods or even in bigger catchment areas. It is most appropriate where a relatively constant amount of blackwater and greywater is generated. A (semi-) centralized ABR is appropriate when there is a pre-existing Conveyance technology, such as a Simplified Sewer (C.4).

This technology is suitable for areas where land may be limited since the tank is most commonly installed underground and requires a small area. However, a vacuum truck should be able to access the location because the sludge must be regularly removed (particularly from the settler). ABRs can be installed in every type of climate, although the efficiency is lower in colder climates. They are not efficient at removing nutrients and pathogens. The effluent usually requires further treatment.

Health Aspects/Acceptance

Under normal operating conditions, users do not come in contact with the influent or effluent. Effluent, scum and sludge must be handled with care as they contain high levels of pathogenic organisms. The effluent contains odorous compounds that may have to be removed in a further polishing step. Care should be taken to design and locate the facility such that odours do not bother community members.

Operation & Maintenance

An ABR requires a start-up period of several months to reach full treatment capacity since the slow growing anaerobic biomass first needs to be established in the reactor. To reduce startup time, the ABR can be inoculated with anaerobic bacteria, e.g., by adding fresh cow dung or Septic Tank sludge. The added stock of active bacteria can then multiply and adapt to the incoming wastewater. Because of the delicate ecology, care should be taken not to discharge harsh chemicals into the ABR.

Scum and sludge levels need to be monitored to ensure that the tank is functioning well. Process operation in general is not required, and maintenance is limited to the removal of accumulated sludge and scum every 1 to 3 years. This is best done using a Motorized Emptying and Transport technology (C.3). The desludging frequency depends on the chosen pre-treatment steps, as well as on the design of the ABR. ABR tanks should be checked from time to time to ensure that they are watertight.

References

  • Bachmann, A., Beard, V. L. and McCarty, P. L. (1985). Performance Characteristics of the Anaerobic Baffled Reactor. Water Research 19 (1): 99-106.
  • Barber, W. P. and Stuckey, D. C. (1999). The Use of the Anaerobic Baffled Reactor (ABR) for Wastewater Treatment: A Review. Water Research 33 (7): 1559-1578.
  • Foxon, K. M., Buckley, C. A., Brouckaert, C. J., Dama, P., Mtembu, Z., Rodda, N., Smith, M., Pillay, S., Arjun, N., Lalbahadur, T. and Bux, F. (2006). Evaluation of the Anaerobic Baffled Reactor for Sanitation in Dense Peri-urban Settlements. WRC Report No 1248/01/06, Water Research Commission, Pretoria, ZA.
Available at: wrc.org.za
  • Foxon, K. M., Pillay, S., Lalbahadur, T., Rodda, N., Holder, F. and Buckley, C. A. (2004). The Anaerobic Baffled Reactor (ABR): An Appropriate Technology for on-Site Sanitation. Water SA 30 (5) (Special Edition).
Available at: wrc.org.za
  • Stuckey, D. C. (2010). Anaerobic Baffled Reactor (ABR) for Wastewater Treatment. In: Environmental Anaerobic Technology. Applications and New Developments, H. H. P. Fang (Ed.), Imperial College Press, London, UK.
  • Ulrich, A. (Ed.), Reuter, S. (Ed.), Gutterer, B. (Ed.), Sasse, L., Panzerbieter, T. and Reckerzügel, T. (2009). Decentralised Wastewater Treatment Systems (DEWATS) and Sanitation in Developing Countries. A Practical Guide. WEDC, Loughborough University, Leicestershire, UK.

Acknowledgements

Eawag compendium cover.png

The material on this page was adapted from:

Elizabeth Tilley, Lukas Ulrich, Christoph Lüthi, Philippe Reymond and Christian Zurbrügg (2014). Compendium of Sanitation Systems and Technologies, published by Sandec, the Department of Water and Sanitation in Developing Countries of Eawag, the Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.

The 2nd edition publication is available in English. French and Spanish are yet to come.