Difference between revisions of "Upflow Anaerobic Sludge Blanket Reactor"

From Akvopedia
Jump to: navigation, search
(References)
 
(9 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- table at top of page with logo, picture, Application level, Management level, and input-output tables -->
+
{|style="float: left;"
{{santable|
+
|{{Language-box|english_link=Upflow_Anaerobic_Sludge_Blanket_Reactor|french_link=Digesteur_anaérobie_à_flux_ascendant|spanish_link=Reactor_Anaerobico_de_Flujo_Ascendente_con_Manto_de_Lodos|hindi_link=coming soon|malayalam_link=coming soon|tamil_link=coming soon | korean_link=coming soon | chinese_link=Coming soon | indonesian_link=Coming soon | japanese_link=Coming soon}}
 +
|}
 +
{|width="100%"
 +
|style="width:50%;"|{{santable_new|
 
sys1=[[Single Pit System |1]]|
 
sys1=[[Single Pit System |1]]|
sys2=[[Blackwater Treatment System with Infiltration|5]]|
+
sys2=[[Blackwater Treatment System with Infiltration|6]]|
sys3=[[Blackwater Treatment System with Sewerage|6]]|
+
sys3=[[Blackwater Treatment System with Effluent Transport|7]]|
sys4=[[(Semi-) Centralized Treatment System |7]]|
+
sys4=[[Blackwater Transport to (Semi-) Centralized Treatment System |8]]|
sys5=[[Sewerage System with Urine Diversion |8]]|
+
sys5=[[Sewerage System with Urine Diversion |9]]|
 
sys6=|
 
sys6=|
 
sys7=|
 
sys7=|
 
sys8=|
 
sys8=|
 +
sys9=|
 
pic=Upflow_anaerobic_sludge_blanket_reactor1.png|
 
pic=Upflow_anaerobic_sludge_blanket_reactor1.png|
 
ApplHousehold=|
 
ApplHousehold=|
Line 16: Line 20:
 
ManShared=|
 
ManShared=|
 
ManPublic=XX|
 
ManPublic=XX|
Input1=Blackwater|Input2=Greywater |Input3= | Input4= |Input5=|
+
Input1=Blackwater|Input2=Greywater |Input3=Brownwater | Input4= |Input5=|
Output1= Effluent | Output2= Treated Sludge | Output3= Biogas | Output4= | Output5=
+
Output1= Effluent | Output2= Sludge | Output3= Biogas | Output4= | Output5=
|english_link=Upflow_Anaerobic_Sludge_Blanket_Reactor
 
|french_link=Digesteur_anaérobie_à_flux_ascendant
 
|spanish_link=Reactor Anaerobico de Flujo Ascendente con Manto de Lodos
 
 
}}
 
}}
 +
|[[Image:Upflow_anaerobic_sludge_blanket_reactor1.png |right|500px]]
 +
|}
 +
<br>
 +
----
 +
<br>
  
[[Image:Icon_upflow_anaerobic_sludge_blanket_reactor.png |right|95px]]
+
[[Image:Icon_upflow_anaerobic_sludge_blanket_reactor.png |right|80px]]
'''The Upflow Anaerobic Sludge Blanket Reactor (UASB) is a single tank process. Wastewater enters the reactor from the bottom, and flows upward. A suspended sludge blanket filters and treats the wastewater as the wastewater flows through it.'''
 
  
The sludge blanket is comprised of microbial granules, i.e. small agglomerations (0.5 to 2mm in diameter) of microorganisms that, because of their weight, resist being washed out in the upflow. The microorganisms in the sludge layer degrade organic compounds. As a result, gases (methane and carbon dioxide) are released. The rising bubbles mix the sludge without the assistance of any mechanical parts. Sloped walls deflect material that reaches the top of the tank downwards. The clarified effluent is extracted from the top of the tank in an area above the sloped walls.
+
'''The upflow anaerobic sludge blanket reactor (UASB) is a single tank process. Wastewater enters the reactor from the bottom, and flows upward. A suspended
 +
sludge blanket filters and treats the wastewater as the wastewater flows through it.'''
  
After several weeks of use, larger granules of sludge form which in turn act as filters for smaller particles as the effluent rises through the cushion of sludge. Because of the upflow regime, granule-forming organisms are preferentially accumulated as the others are washed out.
+
<br>
 +
The sludge blanket is comprised of microbial granules (1 to 3 mm in diameter), i.e., small agglomerations of microorganisms that, because of their weight, resist being washed out in the upflow. The microorganisms in the sludge layer degrade organic compounds. As a result, gases (methane and carbon dioxide) are released. The rising bubbles mix the sludge without the assistance of any mechanical parts. Sloped walls deflect material that reaches the top of the tank downwards. The clarified effluent is extracted from the top of the tank in an area above the sloped walls.
  
The gas that rises to the top is collected in a gas collection dome and can be used as energy (biogas). An upflow velocity of 0.6 to 0.9m/h must be maintained to keep the sludge blanket in suspension.
+
After several weeks of use, larger granules of sludge form which, in turn, act as filters for smaller particles as the effluent rises through the cushion of sludge.
 +
Because of the upflow regime, granule-forming organisms are preferentially accumulated as the others are washed out.
  
 +
===Design Considerations===
 +
Critical elements for the design of UASB reactors are the influent distribution system, the gas-solids separator, and the effluent withdrawal design. The gas that rises to the top is collected in a gas collection dome and can be used as energy (biogas). An upflow velocity of 0.7 to 1 m/h must be maintained to keep the sludge blanket in suspension. Primary settling is usually not required before the UASB.
 +
 +
<br>
 
{{procontable | pro=
 
{{procontable | pro=
 
- High reduction in organics. <br> - Can withstand high organic loading rates (up to 10kg BOD/m3/d) and high hydraulic loading rates. <br> - Low production sludge (and thus, infrequent desludging required). <br> - Biogas can be used for energy (but usually requires scrubbing first). | con=
 
- High reduction in organics. <br> - Can withstand high organic loading rates (up to 10kg BOD/m3/d) and high hydraulic loading rates. <br> - Low production sludge (and thus, infrequent desludging required). <br> - Biogas can be used for energy (but usually requires scrubbing first). | con=
Line 37: Line 49:
 
}}
 
}}
  
==Adequacy==
+
===Appropriateness===  
 
+
A UASB is not appropriate for small or rural communities without a constant water supply or electricity. The technology is relatively simple to design and build, but developing the granulated sludge may take several months. The UASB reactor has the potential to produce higher quality effluent than [[Septic Tank|Septic Tanks]] (S.9), and can do so in a smaller reactor volume. Although it is a well-established process for large-scale industrial wastewater treatment and high organic loading rates up to 10 kg BOD/m3/d, its application to domestic sewage is still relatively new.
A UASB is not appropriate for small or rural communities without a constant water supply or electricity. A skilled operator is required to monitor and repair the reactor and the pump in case of problems. Although the technology is simple to design and build, it is not well proven for domestic wastewater, although new research is promising.
 
  
The UASB reactor has the potential to produce higher quality effluent than Septic Tank|septic tanks]], and can do so in a smaller reactor volume. Although it is a wellestablished process for large-scale industrial wastewater treatment processes, its application to domestic sewage is still relatively new. Typically it is used for brewery, distillery, food processing and pulp and paper waste since the process can typically remove 85% to 90% of Chemical Oxygen Demand (COD). Where the influent is low strength, the reactor may not work properly. Temperature will also affect performance.
+
It is often used for brewery, distillery, food processing and pulp and paper waste since the process typically removes 80 to 90% of COD. Where the influent is low strength or where it contains too many solids, proteins or fats, the reactor may not work properly. Temperature is also a key factor affecting the performance. or fats, the reactor may not work properly. Temperature is also a key factor affecting the performance.
  
==Health Aspects/Acceptance==
+
===Health Aspects/Acceptance===
 +
The operators should take proper health and safety measures while working in the plant, such as adequate protective clothing. Effluent and sludge still pose a health risk and should not be directly handled.
  
UASB is a centralized treatment technology that must be operated and maintained by professionals. As with all wastewater processes, operators should take proper health and safety measures while working in the plant.
+
===Operation & Maintenance===
 +
The UASB is a Centralized Treatment technology that must be operated and maintained by professionals. A skilled operator is required to monitor the reactor and repair parts, e.g., pumps, in case of problems. Desludging is infrequent and only excess sludge is removed every 2 to 3 years.
  
==Maintenance==
+
===References===
 +
* Lettinga, G., Roersma, R. and Grin, P. (1983). Anaerobic Treatment of Raw Domestic Sewage at Ambient Temperatures Using a Granular Bed UASB Reactor. Biotechnology and Bioengineering 25 (7): 1701-1723. (The first paper describing the process)
  
Desludging is infrequent and only excess sludge is removed once every 2 to 3 years. A permanent operator is required to control and monitor the dosing pump.
+
* von Sperling, M. and de Lemos Chernicharo, C. A. (2005). [https://www.iwapublishing.com/sites/default/files/ebooks/9781780402734.pdf Biological Wastewater Treatment in Warm Climate Regions, Volume One]. IWA Publishing, London, UK. pp. 741-804. (Detailed design information)
  
==Acknowledgements==
+
* Tare, V. and Nema, A. (n.d.). [http://unapcaem.org/Activities%20Files/A01/UASB%20Technology%20%E2%80%93%20Expectations%20and%20Reality.pdf UASB Technology – Expectations and Reality]. United Nations Asian and Pacific Centre for Agricultural Engineering and Machinery, Beijing, CN. (Assessment of UASB installations in India)
{{:Acknowledgements Sanitation}}
 
  
==References and external links==
+
* Tchobanoglous, G., Burton, F. L. and Stensel, H. D. (2004). Wastewater Engineering: Treatment and Reuse, Metcalf & Eddy, 4th Ed. (Internat. Ed.). McGraw-Hill, New York, US. pp. 1005-1016. (Book; Detailed description and design information)
  
* Crites, R. and Tchobanoglous, G. (1998). Small and decentralized wastewater management systems. WCB and McGraw-Hill, New York, USA. (Short overview.)
+
* Ulrich, A. (Ed.), Reuter, S. (Ed.), Gutterer, B. (Ed.), Sasse, L., Panzerbieter, T. and Reckerzügel, T. (2009). [https://wedc-knowledge.lboro.ac.uk/resources/books/DEWATS_-_Chapter_01.pdf Decentralised Wastewater Treatment Systems (DEWATS) and Sanitation in Developing Countries. A Practical Guide]. WEDC, Loughborough University, Leicestershire, UK. (Short overview)
  
* Lettinga, G., Roersma, R. and Grin, P. (1983). Anaerobic Treatment of Raw Domestic Sewage at Ambient Temperatures Using a Granular Bed UASB Reactor Biotechnology and Bioengineering 25 (7): 1701–1723. (The first paper describing the process.)
+
* Vigneswaran, S., Balasuriya, B. L. N. and Viraraghavan, T. (1986). [https://www.ircwash.org/sites/default/files/341.2-86AN-2504.pdf Environmental Sanitation Reviews. Anaerobic Wastewater Treatment – Attached Growth and Sludge Blanket Process]. Environmental Sanitation Information Center, AIT, Bangkok, TH. (Good technical overview – Chapter 5)
  
* Sasse, L. (1998). DEWATS: Decentralised Wastewater Treatment in Developing Countries. BORDA, Bremen Overseas Research and Development Association, Bremen, Germany. (Short overview.)
+
===Acknowledgements===
 
+
{{:Acknowledgements Sanitation}}
* von Sperlin, M. and de Lemos Chernicharo, CA. (2005). Biological Wastewater Treatment in Warm Climate Regions. Volume One. IWA, London, pp 741–804. (Detailed design information)
 
 
 
* Tare, V. and Nema, A. (n.d). UASB Technology-expectations and reality. United Nations Asian and Pacific Centre for Agricultural Engineering and Machinery. Available: http://unapcaem.org (Assessment of UASB installations in India.)
 
 
 
* Vigneswaran, S., et al. (1986). Environmental Sanitation Reviews: Anaerobic Wastewater Treatment- Attached growth and sludge blanket process. Environmental Sanitation Information Center, AIT, Bangkok, Thailand. (Chapter 5 provides a good technical overview.)
 

Latest revision as of 04:51, 30 October 2020

English Français Español भारत മലയാളം தமிழ் 한국어 中國 Indonesia Japanese
Applicable in systems:
1, 6 , 7 , 8 , 9
Level of Application
Household
Neighbourhood X
City XX

 

Inputs
Blackwater, Greywater, Brownwater


Level of management
Household
Shared
Public XX

 

Outputs
Effluent, Sludge, Biogas
Upflow anaerobic sludge blanket reactor1.png




Icon upflow anaerobic sludge blanket reactor.png

The upflow anaerobic sludge blanket reactor (UASB) is a single tank process. Wastewater enters the reactor from the bottom, and flows upward. A suspended sludge blanket filters and treats the wastewater as the wastewater flows through it.


The sludge blanket is comprised of microbial granules (1 to 3 mm in diameter), i.e., small agglomerations of microorganisms that, because of their weight, resist being washed out in the upflow. The microorganisms in the sludge layer degrade organic compounds. As a result, gases (methane and carbon dioxide) are released. The rising bubbles mix the sludge without the assistance of any mechanical parts. Sloped walls deflect material that reaches the top of the tank downwards. The clarified effluent is extracted from the top of the tank in an area above the sloped walls.

After several weeks of use, larger granules of sludge form which, in turn, act as filters for smaller particles as the effluent rises through the cushion of sludge. Because of the upflow regime, granule-forming organisms are preferentially accumulated as the others are washed out.

Design Considerations

Critical elements for the design of UASB reactors are the influent distribution system, the gas-solids separator, and the effluent withdrawal design. The gas that rises to the top is collected in a gas collection dome and can be used as energy (biogas). An upflow velocity of 0.7 to 1 m/h must be maintained to keep the sludge blanket in suspension. Primary settling is usually not required before the UASB.


Advantages Disadvantages/limitations
- High reduction in organics.
- Can withstand high organic loading rates (up to 10kg BOD/m3/d) and high hydraulic loading rates.
- Low production sludge (and thus, infrequent desludging required).
- Biogas can be used for energy (but usually requires scrubbing first).
- Difficult to maintain proper hydraulic conditions (upflow and settling rate must be balanced).
- Long start up time.
- Treatment may be unstable with variable hydraulic and organic loads.
- Constant source of electricity is required.
- Not all parts and materials may be available locally.
- Requires expert design and construction supervision.


Appropriateness

A UASB is not appropriate for small or rural communities without a constant water supply or electricity. The technology is relatively simple to design and build, but developing the granulated sludge may take several months. The UASB reactor has the potential to produce higher quality effluent than Septic Tanks (S.9), and can do so in a smaller reactor volume. Although it is a well-established process for large-scale industrial wastewater treatment and high organic loading rates up to 10 kg BOD/m3/d, its application to domestic sewage is still relatively new.

It is often used for brewery, distillery, food processing and pulp and paper waste since the process typically removes 80 to 90% of COD. Where the influent is low strength or where it contains too many solids, proteins or fats, the reactor may not work properly. Temperature is also a key factor affecting the performance. or fats, the reactor may not work properly. Temperature is also a key factor affecting the performance.

Health Aspects/Acceptance

The operators should take proper health and safety measures while working in the plant, such as adequate protective clothing. Effluent and sludge still pose a health risk and should not be directly handled.

Operation & Maintenance

The UASB is a Centralized Treatment technology that must be operated and maintained by professionals. A skilled operator is required to monitor the reactor and repair parts, e.g., pumps, in case of problems. Desludging is infrequent and only excess sludge is removed every 2 to 3 years.

References

  • Lettinga, G., Roersma, R. and Grin, P. (1983). Anaerobic Treatment of Raw Domestic Sewage at Ambient Temperatures Using a Granular Bed UASB Reactor. Biotechnology and Bioengineering 25 (7): 1701-1723. (The first paper describing the process)
  • Tchobanoglous, G., Burton, F. L. and Stensel, H. D. (2004). Wastewater Engineering: Treatment and Reuse, Metcalf & Eddy, 4th Ed. (Internat. Ed.). McGraw-Hill, New York, US. pp. 1005-1016. (Book; Detailed description and design information)

Acknowledgements

Eawag compendium cover.png

The material on this page was adapted from:

Elizabeth Tilley, Lukas Ulrich, Christoph Lüthi, Philippe Reymond and Christian Zurbrügg (2014). Compendium of Sanitation Systems and Technologies, published by Sandec, the Department of Water and Sanitation in Developing Countries of Eawag, the Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.

The 2nd edition publication is available in English. French and Spanish are yet to come.