

Your National Sewerage Company

SBR – System Overview

at Pembetungan Nasional Anda Your National Sewerace Company

- **Design Considerations for SBR System**
- **Recommended design parameters**
- **Advantage / Disadvantage of SBR**
- □ Variation of SBR Systems

SBR Systems

Historical Prospective:

- Fill and draw first shown beneficial use Arden and Lockett in England.
- Many difficulties associated with "batch" processes, continuous flow become popular.
- Resurgence of "batch":
 - when <u>Pasveer's</u> modification of OD to intermittently aeration and discharge;
 - <u>Goronszy's</u> use of continuous feed and intermittently aeration and discharge.

Today's prospective:

- Hardware devices controllable: motorized / pneumatic valves, motorized shaft, etc.;
- Advent of PLC making operator's control: automated;

Batch processes - popular again due to many difficulties resolved and benefits demonstrated.

Syarikat Pembetungan Nasional Anda

Your National Sewerage Company

Sequencing Batch Reactor merges aeration & clarifier:

SBR Systems

SBR (Sequencing Batch Reactor):

• Sewage feeds to a reactor, biological oxidation and clarification take place at same reactor

- Operated on alternative sequence of cyclical mode.
- There are five (5) basic sequences in a cycle, namely:
 - Fill
 - React (Aeration)
 - Settle
 - Decant
 - Idle (optional- mostly not use)

SBR System

Syarikat Pembetungan Nasional Anda

at Pembetungan Nasional Anda Your National Sewerace Company

- **Design Considerations for SBR System**
- **Recommended design parameters**
- **Advantage / Disadvantage of SBR**
- □ Variation of SBR Systems

Syarikat Pembetungan Nasional Anda

Syarikat Pembetungan Nasional Anda

Syarikat Pembetungan Nasional Anda

Syarikat Pembetungan Nasional Anda

Your National Sewerage Company

Correlation of Zone Settling Velocity with MLSS & SVI

Correlation of V_i and MLSS based on work and studies by Daigger 1993 and Wahlberg, 1995

 $Ln(V_i) = 1.87 - (0.1646 + 0.001586xSVI) X_t$

 $V_{design} = Vi / (SF=1.25)$

where:

TWL

BWL

 $V_{i} = Zone settling velocity or$ interfacial settling velocity (m/hr) SVI = Sludge Volume Index, (mL/g) $X_{t} = MLSS concentration, (g/L)$

← MLSS = 3,000mg/L

MLSS at TWL = 3,000 mg/L

Syarikat Pembetungan Nasional Anda

Syarikat Pembetungan Nasional Anda

Syarikat Pembetungan Nasional Anda

Your National Sewerage Company

N_{cycle} (cycle/day)= 24(hr/day) / Σt_{cycle} (hr/cycle)

Preferably unique round number for each SBR Tank

Syarikat Pembetungan Nasional Anda

Your National Sewerage Company

High Flow: Need to stop aeration: allow settling earlier

t Pembetungan Nasional Anda Your National Sewerace Company

- **Design Considerations for SBR System**
- **Recommended design parameters**
- **Advantage / Disadvantage of SBR**
- □ Variation of SBR Systems

Recommended Design Parameters

Syarikat Pembetungan Nasional Anda

Parameter	Unit	Continuous Fill and Intermittently Decant	Intermittently Fill and Intermittently Decant		
No. of Reactors	Unit	Minimum 2	Minimum 2		
Hydraulic retention time at Qavg (at average water level	hr	18 – 24	18 – 24		
F/M Ratio	d-1	0.05 – 0.08	0.05 – 0.30		
Sludge Age	D	20 - 30	10 – 30		
Sludge Yield	kg sludge/ kg Load	0.75	0.75		
MLSS (End of Decant)	mg/L	3,000 - 4,500	3,000 – 5,000		
Cycle Time	Hr	4 - 8	4 - 8		
Oxygen Required DO (Reactor) DO (Effluent)	mg/L mg/L	0 ~ 6.5 2.0	0 ~ 6.5 2.0		
Minimum Settling Time (before start of decant)	Hr	> 0.6 for decant from TWL downward > 1.0 for fixed points decant	> 0.6 for decant from TWL downward > 1.0 for fixed points decant		
Decant Time	Hr	≥ 1.0	≥ 1.0		
Decant Depth	М	Max 1.0 (surface decant only)	max 1.5 (surface decant only)		
Decant Volume	%	Not more than 25% of volume of Biological Reactor at TWL	Not more than 30% of volume of Biological Reactor at TWL		
Decanting Device Loading Rate*	m ³ /m/hr	$ \leq 20 \text{ for decant from TWL & if SOR(decant) <} 20 \text{ m}^3/\text{m}^2.\text{d} \\ \leq 15 \text{ for decant from TWL & if SOR(decant) <} 30 \text{ m}^3/\text{m}^2.\text{d} \\ \leq 10 \text{ for fixed points decant regardless of SOR} $	 ≤ 20 for decant TWL & if SOR(decant) <20 m³/m².d ≤ 15 for decant from TWL & if SOR(decant) <30 m³/m².d ≤ 10 for fixed points decant regardless of SOR 		
WAS	Kg Sludge/d	$WAS = \frac{Total Solids in System}{Sludge Age}$	$WAS = \frac{Total Solids in System}{Sludge Age}$		
Fill Volume	m ³	$V_{\text{fill}} = (Q_{\text{p}} \text{ m}^3/\text{hr x 1.5hr}) + (T_{\text{fill}} - 1.5) \text{ x } Q_{\text{AVG}}$ (if no EQ) $V_{\text{fill}} = Q_{\text{AVG}} \text{ x } T_{\text{fill}} \text{ (if preceded by EQ)}$	$V_{\text{fill}} = (Q_{\text{p}} \text{ m}^{3}/\text{hr x 1.5hr}) + (T_{\text{fill}} - 1.5) \text{ x } Q_{\text{AVG}}$ (if no EQ) $V_{\text{fill}} = Q_{\text{AVG}} \text{ x } T_{\text{fill}} \text{ (if preceded by EQ)}$		

SBR System

Syarikat Pembetungan Nasional Anda

Your National Sewerage Company

Construction Cost

Year (Construction)	Unit	2002	2000	2000	2001
Size	(in PE)	50,000	20,000	15,500	12,000
Flow	(m ³ /d)	11,250	4,500	3,488	2,700
Total Cost	(RM in Million)	4.80	3.40	3.52	2.36
C&S Cost (exclude Pilling)	(RM in Million)	2.47	1.64	1.72	0.94
M&E Cost	(RM in Million)	2.33	1.76	1.80	1.42
Cost / PE	(RM/PE)	96	170	227	197
Cost / m ³	(RM/m ³)	207	391	516	526

Electricity Cost

Size	(in PE)	<5,000	<10,000	<20,000	<50,000
Electricity	(RM/PE/yr)	8.73	3.03	1.48	1.66

at Pembetungan Nasional Anda Your National Sewerace Company

- **Design Considerations for SBR System**
- **Recommended design parameters**
- **Advantage / Disadvantage of SBR**
- □ Variation of SBR Systems

SBR System

Syarikat Pembetungan Nasional Anda Your National Sewerage Company

SBR advantages

Process modification simply change process timing

SBR System

Syarikat Pembetungan Nasional Anda

Your National Sewerage Company

SBR disadvantages

at Pembetungan Nasional Anda Your National Sewerace Company

- **Design Considerations for SBR System**
- **Recommended design parameters**
- Advantage / Disadvantage of SBR
- □ Variation of SBR Systems

hwater Syarikat Pembet

SBR (Sequencing Batch Reactor) has emerged as <u>an alternative</u> to continuous flow activated sludge systems with following reasons:-

- Advent of PLC;
- Small land area requirements;
- Less unit processes; less capital & O&M cost;
- Less labor: automated control by PLC's;
- Batch: equalized variation and shock load (hydraulic & organic);
- Improve effluent quality: quiescent settling;
- Many parameters removal in a batch processes;

Since then, variation from the original fill and draw SBR system.....

Variation of SBR Designs

SBR: Anoxic / Anaerobic / Mixed Fill

Fill			
React			
Settle			
Decant			

SBR: Fill-Aerate

SBR: Continuous Fill

Fill			
React			
Settle			
Decant			

SBR: Settle-Decant Fill

SBR: Intermittently Decanted EA

Note:

Some with RAS or internal recycle from back to inlet zone to improve F_0/X_0

Other Variations

Syarikat Pembetungan Nasional Anda

Your National Sewerage Company

Decanter:-

- Surface skimming decanter (arm drive or floating);
- Siphon lock fixed position decanter;

- Fixed points actuator controlled decant valves;
- Floating weir decanter

Other Variations

Syarikat Pembetungan Nasional Anda

Your National Sewerage Company

Aeration Devices: -

- Diffuser system
 - (coarse or fine in tube or disc diffusers);
- Jet aerators, ejectors, or submersible aerators;
- "Sinkair" aerator, and floating aerators.

Other Variations

IndahWater

Syarikat Pembetungan Nasional Anda

Your National Sewerage Company

PLC system: -

Different brand and different programming languages used;

-Hand wire with timer;

at Pembetungan Nasional Anda Your National Sewerace Company

- **Design Considerations for SBR System**
- **Recommended design parameters**
- Advantage / Disadvantage of SBR
- **☑** Variation of SBR Systems

IndahWater

Reviewed of SBR System:

- Looked at emergence of SBR: advent of PLC & controllable components & its beneficial uses;
- Described SBR process & its cycle charts;
- Identified various design considerations;
- Provided recommended design parameters;
- Evaluated benefits and draw backs of SBR system;
- Outlined variation of SBR by processes and by equipment;

In summary:

- SBR alternatives to continuous flow system;
- Variation in processes & equipment emerges must be evaluated;
- Its transient design parameters must be adopted carefully;
- Advantages and disadvantages of the system must be reviewed in an overall view dependence on types of application, operations and control requirement.